Câu hỏi: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của CD. Khoảng cách từ M đến (SAB) nhận giá trị nào trong các giá trị sau? A. \(\frac{{a\sqrt 2 }}{2}\) B. 2a C. \(a\sqrt 2 … [Đọc thêm...] vềCho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a. Gọi M là trung điểm của CD. Khoảng cách từ M đến (SAB) nhận giá trị nào trong các giá trị sau?
Trắc nghiệm Toán 11
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Từ O kẻ OK ⊥ SA, độ dài OK là:
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Từ O kẻ OK ⊥ SA, độ dài OK là: A. \(\frac{{a\sqrt 6 }}{4}\) B. \(\frac{a}{2}\) C. \(\frac{{a\sqrt 3 … [Đọc thêm...] vềCho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Từ O kẻ OK ⊥ SA, độ dài OK là:
Cho hình lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông tại B, AB=BC=a, cạnh bên AA′=\(\sqrt 2 \). Gọi M là trung điểm BC. Tính d(AM;B′C).
Câu hỏi: Cho hình lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông tại B, AB=BC=a, cạnh bên AA′=\(\sqrt 2 \). Gọi M là trung điểm BC. Tính d(AM;B′C). A. \(\frac{a}{7}\) B. \(a\sqrt 7 \) C. \(\frac{a}{{\sqrt 7 }}\) D. \(\frac{2a}{{\sqrt 7 … [Đọc thêm...] vềCho hình lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông tại B, AB=BC=a, cạnh bên AA′=\(\sqrt 2 \). Gọi M là trung điểm BC. Tính d(AM;B′C).
Cho hình chóp S.ABCD có SA \( \bot \)( ABCD), đáy ABCD là hình chữ nhật với AC = \(a\sqrt 5 \) và BC=\(a\sqrt 2 \). Tính khoảng cách giữa SD và BC
Câu hỏi: Cho hình chóp S.ABCD có SA \( \bot \)( ABCD), đáy ABCD là hình chữ nhật với AC = \(a\sqrt 5 \) và BC=\(a\sqrt 2 \). Tính khoảng cách giữa SD và BC A. \(\frac{{2a}}{3}\) B. \(\frac{{a\sqrt 3 }}{2}\) C. \(\frac{{3a}}{4}\) D. \(a\sqrt 3 … [Đọc thêm...] vềCho hình chóp S.ABCD có SA \( \bot \)( ABCD), đáy ABCD là hình chữ nhật với AC = \(a\sqrt 5 \) và BC=\(a\sqrt 2 \). Tính khoảng cách giữa SD và BC
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Góc giữa hai mặt phẳng (SBD) và (SAC) bằng:
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Góc giữa hai mặt phẳng (SBD) và (SAC) … [Đọc thêm...] vềCho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, góc nhọn bằng 600 và cạnh SC vuông góc với mặt phẳng (ABCD) và SC = \(\frac{{a\sqrt 6 }}{3}\). Góc giữa hai mặt phẳng (SBD) và (SAC) bằng:
Cho hình tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bẳng a. gọi O là tâm của đáy ABCD. Gọi M là trung điểm của SC. Hai mặt phẳng (SAC) và (MBD) vuông góc với nhau vì:
Câu hỏi: Cho hình tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bẳng a. gọi O là tâm của đáy ABCD. Gọi M là trung điểm của SC. Hai mặt phẳng (SAC) và (MBD) vuông góc với nhau vì: A. góc giữa hai mặt phẳng này là góc AOD bằng 900 B. (SAC) ⊃ AC ⊥ (MBD) C. (MBD) ⊃ BD ⊥ … [Đọc thêm...] vềCho hình tứ giác đều S.ABCD có cạnh bên và cạnh đáy đều bẳng a. gọi O là tâm của đáy ABCD. Gọi M là trung điểm của SC. Hai mặt phẳng (SAC) và (MBD) vuông góc với nhau vì:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:
Câu hỏi: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng: A. 0o B. 45o C. 60o D. 90o Lời giải tham khảo: Đáp án đúng: C SA ⊥ (ABC) ⇒ … [Đọc thêm...] vềCho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (ABC) bằng:
Câu hỏi: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (ABC) bằng: A. 0o B. 45o C. 60o D. 90o Lời giải tham khảo: Đáp án đúng: … [Đọc thêm...] vềCho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = \(\frac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (ABC) bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD) vì:
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD) vì: A. AC ⊂ (SAC) và AC ⊥ (SBD) do AC ⊥ SO và AC ⊥ BD B. AC ⊂ (ABCD) và AC ⊥ (SBD) do AC ⊥ SO và AC ⊥ BD C. AC ⊂ (SAC) và AC ⊥ SO ⊂ … [Đọc thêm...] về Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD) vì:
Cho tứ diện đều ABCD có cạnh bằng a. Khoảng cách từ A đến (BCD) là:
Câu hỏi: Cho tứ diện đều ABCD có cạnh bằng a. Khoảng cách từ A đến (BCD) là: A. \(\frac{{a\sqrt 6 }}{2}\) B. \(\frac{{a\sqrt 6 }}{3}\) C. \(\frac{{a\sqrt 3 }}{6}\) D. \(\frac{{a\sqrt 3 }}{3}\) Lời giải tham khảo: Đáp án … [Đọc thêm...] vềCho tứ diện đều ABCD có cạnh bằng a. Khoảng cách từ A đến (BCD) là: