Câu hỏi: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Tính thể tích khối tứ diện A’.ABC theo V. A. \(\frac{V}{3}\) (đvtt) B. \(\frac{V}{6}\)(đvtt) C. \(\frac{V}{4}\) (đvtt) D. \(\frac{V}{2}\) (đvtt) trả lời câu hỏi trước khi xem đáp án bên dưới … [Đọc thêm...] vềCho hình hộp ABCD.A’B’C’D’ có thể tích là V. Tính thể tích khối tứ diện A’.ABC theo V.
Tính thể tích khối đa diện gián tiếp
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB=a. Gọi G là trọng tâm của tam giác ABC. Biết rằng A’G vuông góc với mặt đáy (ABC) và A’B tạo với đáy một góc \({45^0}\). Tính thể tích khối chóp A’BCC’B’.
Câu hỏi: Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB=a. Gọi G là trọng tâm của tam giác ABC. Biết rằng A’G vuông góc với mặt đáy (ABC) và A’B tạo với đáy một góc \({45^0}\). Tính thể tích khối chóp A’BCC’B’. A. \(\frac{{{a^3}\sqrt 5 }}{9}\) (đvtt) B. \(\frac{{{a^3}\sqrt 5 … [Đọc thêm...] vềCho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB=a. Gọi G là trọng tâm của tam giác ABC. Biết rằng A’G vuông góc với mặt đáy (ABC) và A’B tạo với đáy một góc \({45^0}\). Tính thể tích khối chóp A’BCC’B’.
Hình hộp chữ nhật ABCD.A’B’C’D’ có diện tích các mặt ABCD, ABB’A’, ADD’A’ lần lượt bằng \(20c{m^2},28c{m^2},35c{m^2}.\) Tính thể tích khối hộp ABCD.A’B’C’D’.
Câu hỏi: Hình hộp chữ nhật ABCD.A’B’C’D’ có diện tích các mặt ABCD, ABB’A’, ADD’A’ lần lượt bằng \(20c{m^2},28c{m^2},35c{m^2}.\) Tính thể tích khối hộp ABCD.A’B’C’D’. A. 120\(c{m^3}\) B. 140\(c{m^3}\) C. 150\(c{m^3}\) D. 160\(c{m^3}\) trả lời câu hỏi trước khi xem đáp án … [Đọc thêm...] vềHình hộp chữ nhật ABCD.A’B’C’D’ có diện tích các mặt ABCD, ABB’A’, ADD’A’ lần lượt bằng \(20c{m^2},28c{m^2},35c{m^2}.\) Tính thể tích khối hộp ABCD.A’B’C’D’.
Cho khối tứ diện ABCD, lấy điểm M trên cạnh AB sao cho 3AM=4MB. Tính tỉ số \(\frac{{{V_{AMCD}}}}{{{V_{BMCD}}}}.\)
Câu hỏi: Cho khối tứ diện ABCD, lấy điểm M trên cạnh AB sao cho 3AM=4MB. Tính tỉ số \(\frac{{{V_{AMCD}}}}{{{V_{BMCD}}}}.\) A. \(\frac{3}{4}.\) B. \(\frac{4}{7}\) C. \(\frac{4}{3}\) D. \(\frac{7}{3}\) trả lời câu hỏi trước khi xem đáp án bên dưới … [Đọc thêm...] vềCho khối tứ diện ABCD, lấy điểm M trên cạnh AB sao cho 3AM=4MB. Tính tỉ số \(\frac{{{V_{AMCD}}}}{{{V_{BMCD}}}}.\)
Cho hàm số S.ABC. Gọi M là trung điểm của đoạn SA, N là điểm trên đường thẳng SC sao cho \(\frac{{{V_{S.MNB}}}}{{{V_{S.ABC}}}} = \frac{2}{3}\). Trong các khẳng định sau, tìm khẳng định đúng.
Câu hỏi: Cho hàm số S.ABC. Gọi M là trung điểm của đoạn SA, N là điểm trên đường thẳng SC sao cho \(\frac{{{V_{S.MNB}}}}{{{V_{S.ABC}}}} = \frac{2}{3}\). Trong các khẳng định sau, tìm khẳng định đúng. A. N thuộc tia CS và nằm ngoài đoạn CS. B. N nằm trên đoạn SC nhưng không phải trung điểm SC. C. N thuộc tia … [Đọc thêm...] vềCho hàm số S.ABC. Gọi M là trung điểm của đoạn SA, N là điểm trên đường thẳng SC sao cho \(\frac{{{V_{S.MNB}}}}{{{V_{S.ABC}}}} = \frac{2}{3}\). Trong các khẳng định sau, tìm khẳng định đúng.
Cho hàm số S.ABC. Gọi M, N lần lượt là trung điểm của SA, SB. Hãy tính \(k = \frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}}.\)
Câu hỏi: Cho hàm số S.ABC. Gọi M, N lần lượt là trung điểm của SA, SB. Hãy tính \(k = \frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}}.\) A. \(k = \frac{1}{8}\) B. \(k = \frac{1}{4}\) C. \(k = 4\) D. \(k = \frac{1}{2}\) trả lời câu hỏi trước khi xem đáp án bên dưới … [Đọc thêm...] vềCho hàm số S.ABC. Gọi M, N lần lượt là trung điểm của SA, SB. Hãy tính \(k = \frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}}.\)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy. Gọi M và N lần lượt là trung điểm của AD và SC, I là giao điểm của BM và AC. Tỉ số thể tích của hai khối chóp ANIB và S.ABCD là:
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy. Gọi M và N lần lượt là trung điểm của AD và SC, I là giao điểm của BM và AC. Tỉ số thể tích của hai khối chóp ANIB và S.ABCD … [Đọc thêm...] vềCho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy. Gọi M và N lần lượt là trung điểm của AD và SC, I là giao điểm của BM và AC. Tỉ số thể tích của hai khối chóp ANIB và S.ABCD là:
Cho tứ diện ABCD có \(AB = 3a,AC = 2a\) và \(AD = 4a.\) Tính theo a thể tích V của khối tứ diện ABCD biết \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^o}.\)
Câu hỏi: Cho tứ diện ABCD có \(AB = 3a,AC = 2a\) và \(AD = 4a.\) Tính theo a thể tích V của khối tứ diện ABCD biết \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^o}.\) A. \(V = 6\sqrt 3 {a^3}.\) B. \(V = 2\sqrt 2 {a^3}.\) C. \(V = 2\sqrt 3 {a^3}.\) D. \(V = 6\sqrt 2 … [Đọc thêm...] vềCho tứ diện ABCD có \(AB = 3a,AC = 2a\) và \(AD = 4a.\) Tính theo a thể tích V của khối tứ diện ABCD biết \(\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^o}.\)
Cho tứ diện ABCD có AB = a, CD = \(a\sqrt 3 \), khoảng cách giữa AB và CD bằng 8a, góc giữa hai đường thẳng AB và CD bằng \({60^0}\). Tính thể tích khối tứ diện ABCD.
Câu hỏi: Cho tứ diện ABCD có AB = a, CD = \(a\sqrt 3 \), khoảng cách giữa AB và CD bằng 8a, góc giữa hai đường thẳng AB và CD bằng \({60^0}\). Tính thể tích khối tứ diện ABCD. A. \(V = 2\sqrt 3 {a^3}\) B. \(V = 2{{\rm{a}}^3}\) C. \(V = {a^3}\) D. \(V = 3{a^3}\) trả lời câu … [Đọc thêm...] vềCho tứ diện ABCD có AB = a, CD = \(a\sqrt 3 \), khoảng cách giữa AB và CD bằng 8a, góc giữa hai đường thẳng AB và CD bằng \({60^0}\). Tính thể tích khối tứ diện ABCD.
Cho hình chóp S.ABC có thể tích V. Gọi H, K lần lượt là trung điểm của SB và SC. Tính thể tích của khối chóp S.AHK theo V.
Câu hỏi: Cho hình chóp S.ABC có thể tích V. Gọi H, K lần lượt là trung điểm của SB và SC. Tính thể tích của khối chóp S.AHK theo V. A. \({V_{S.AHK}} = \frac{1}{2}V\) B. \({V_{S.AHK}} = \frac{1}{4}V\) C. \({V_{S.AHK}} = \frac{1}{{12}}V\) D. \({V_{S.AHK}} = \frac{V}{6}\) trả … [Đọc thêm...] vềCho hình chóp S.ABC có thể tích V. Gọi H, K lần lượt là trung điểm của SB và SC. Tính thể tích của khối chóp S.AHK theo V.