Câu hỏi: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu? A. Cạnh … [Đọc thêm...] vềMột người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu?
Bài toán thực tế ứng dụng đạo hàm
Một công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu?
Câu hỏi: Một công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu? A. \(a = \sqrt[3]{{12}}\,\,cm\) B. \(a = … [Đọc thêm...] vềMột công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu?
Để làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh?
Câu hỏi: Để làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh? A. \(71,16\pi \left( {c{m^3}} \right)\) B. \(85,41\pi \left( {c{m^3}} … [Đọc thêm...] vềĐể làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh?
Một tạp chí được bán 25 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức \(C\left( x \right) = 0,0001{x^2} – 0,2x + 11000\), C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 nghìn đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cáo. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có được khi bán tạp chí.
Câu hỏi: Một tạp chí được bán 25 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức \(C\left( x \right) = 0,0001{x^2} - 0,2x + 11000\), C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 nghìn đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được … [Đọc thêm...] vềMột tạp chí được bán 25 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức \(C\left( x \right) = 0,0001{x^2} – 0,2x + 11000\), C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 nghìn đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cáo. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có được khi bán tạp chí.
Bác nông dân cần xây dựng một hố ga không có nắp dạng hình hộp chữ nhật có thể tích 3200 cm3 tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Hãy xác định diện tích của đáy hố ga để khi xây tiết kiệm nguyên vật liệu nhất?
Câu hỏi: Bác nông dân cần xây dựng một hố ga không có nắp dạng hình hộp chữ nhật có thể tích 3200 cm3 tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Hãy xác định diện tích của đáy hố ga để khi xây tiết kiệm nguyên vật liệu nhất? A. \(1600c{m^2}\) … [Đọc thêm...] vềBác nông dân cần xây dựng một hố ga không có nắp dạng hình hộp chữ nhật có thể tích 3200 cm3 tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Hãy xác định diện tích của đáy hố ga để khi xây tiết kiệm nguyên vật liệu nhất?
Người ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là
Câu hỏi: Người ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là A. 3886 \(c{m^3}\) B. 3880 \(c{m^3}\) C. 3900 \(c{m^3}\) D. 3888 … [Đọc thêm...] vềNgười ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là
Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?
Câu hỏi: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi … [Đọc thêm...] vềKhi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?
Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.
Câu hỏi: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí … [Đọc thêm...] vềMột đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.
Một ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\) ít tốn thời gian nhất.
Câu hỏi: Một ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho … [Đọc thêm...] vềMột ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\) ít tốn thời gian nhất.
Một vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Câu hỏi: Một vật chuyển động theo quy luật \(s = 9{t^2} - {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? A. 27 … [Đọc thêm...] vềMột vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?