Câu hỏi:
Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
-
A.
\(2 -
B.
\(\frac{11}{5} -
C.
\(\frac{7}{5}\le m -
D.
\(0
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT QG năm 2021 môn TOÁN
Đáp án đúng: A
Phương trình đã cho tương đương với
\(\left( {{x}^{6}}+6{{x}^{4}}+12{{x}^{2}}+8 \right)-\left( {{m}^{3}}{{x}^{3}}+2{{m}^{2}}{{x}^{2}}+3mx+1 \right)+\left( 3{{x}^{2}}-3mx+3 \right)=0\)
\(\Leftrightarrow {{\left( {{x}^{2}}+2 \right)}^{3}}-{{\left( mx+1 \right)}^{3}}+3\left( {{x}^{2}}-mx+1 \right)=0\)
\(\Leftrightarrow \left( {{x}^{2}}-mx+1 \right)\left[ {{\left( {{x}^{2}}+2 \right)}^{2}}+\left( {{x}^{2}}+2 \right)\left( mx+1 \right)+{{\left( mx+1 \right)}^{2}}+3 \right]=0\)
\(\Leftrightarrow {{x}^{2}}-mx+1=0\) (Vì \({{a}^{2}}+ab+{{b}^{2}}={{\left( a+\frac{1}{2}b \right)}^{2}}+\frac{3}{4}{{b}^{2}}\ge 0,\forall a,b).\)
\(\Leftrightarrow x+\frac{1}{x}=m\) (Do \(x=0\) không thỏa mãn phương trình này).
Xét hàm số \(f\left( x \right)=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\) Ta có:
\(f’\left( x \right)=1-\frac{1}{{{x}^{2}}}\)
\(f’\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = – 1 \notin \left( {\frac{1}{2};2} \right)\\
x = 1 \in \left( {\frac{1}{2};2} \right)
\end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên trên suy ra để phương trình đã cho có đúng 2 nghiệm thỏa mãn \(\left[ \frac{1}{2};2 \right]\) thì \(2
Vậy tất cả các giá trị cần tìm của \(m\) là \(2