Câu hỏi:
Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
-
A.
\(y=2\cdot \) -
B.
\(y=-\frac{1}{2}\cdot \) -
C.
\(y=-2\cdot \) -
D.
\(y=\frac{1}{2}\cdot \)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT QG năm 2021 môn TOÁN
Đáp án đúng: D
Ta có:
\(\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{x+1}{2x+4} \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{x\left( 1+\frac{1}{x} \right)}{x\left( 2+\frac{4}{x} \right)} \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{\left( 1+\frac{1}{x} \right)}{\left( 2+\frac{4}{x} \right)} \right)=\frac{1}{2}\)
\(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{x+1}{2x+4} \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{x\left( 1+\frac{1}{x} \right)}{x\left( 2+\frac{4}{x} \right)} \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{\left( 1+\frac{1}{x} \right)}{\left( 2+\frac{4}{x} \right)} \right)=\frac{1}{2}\)
Vậy đề thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng \(y=\frac{1}{2}.\)