Câu hỏi:
Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
-
A.
\(S=\int\limits_{-1}^{0}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx+}\int\limits_{0}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\). -
B.
\(S=\int\limits_{-1}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\). -
C.
\(S=\int\limits_{-1}^{0}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx-}\int\limits_{0}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\). -
D.
\(S=\left| \int\limits_{-1}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx} \right|\).
Lời giải tham khảo:
Đáp án đúng: C
Diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành là:
\(S=\int\limits_{-1}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx+}\int\limits_{0}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx-}\int\limits_{0}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\)
Chọn: C
==================
Trả lời