Câu hỏi:
Cho hình bình hành ABCD. Trên các đoạn thẳng\(DC,{\mkern 1mu} {\mkern 1mu} AB\) theo thứ tự lấy các điểm \(M,{\mkern 1mu} {\mkern 1mu} N\) sao cho \(DM = BN\). Gọi \(P\) là giao điểm của \(AM,{\mkern 1mu} {\mkern 1mu} DB\) và \(Q\) là giao điểm của \(CN,{\mkern 1mu} {\mkern 1mu} DB\). Khẳng định nào sau đây là đúng?
-
A.
\(\overrightarrow {AM} {\rm{ \;}} = \overrightarrow {NC} \) -
B.
\(\overrightarrow {DP} {\rm{ \;}} = \overrightarrow {QB} \) -
C.
Cả A, B đúng -
D.
Cả A, B sai.
Lời giải tham khảo:
Đáp án đúng: C
Ta có \(DM = BN \Rightarrow AN = MC\), mặt khác AN song song với MC do đó tứ giác ANCM là hình bình hành
Suy ra \(\overrightarrow {AM} {\rm{ \;}} = \overrightarrow {NC} \).
Xét tam giác \(\Delta DMP\) và \(\Delta BNQ\) ta có \(DM = NB\) (giả thiết), \(\widehat {PDM} = \widehat {QBN}\) (so le trong)
Mặt khác \(\widehat {DPM} = \widehat {APB}\) (đối đỉnh) và \(\widehat {APQ} = \widehat {NQB}\) (hai góc đồng vị) suy ra \(\widehat {DPM} = \widehat {NQB}\).
Suy ra: \(\widehat {DMP} = \widehat {BNQ}\).
Do đó \(\Delta DMP = \Delta BNQ\) (c.g.c) suy ra \(DP = QB\).
Dễ thấy \(\overrightarrow {DP} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {QB} \) cùng hướng vì vậy \(\overrightarrow {DP} {\rm{ \;}} = \overrightarrow {QB} \).
Chọn C.
==================
Đề thi HK1 môn LOP 10
Nhằm giúp các em thi HK1 LOP 10, Học Trac Nghiem xin gửi đến các em BỘ Đề thi HK1 LỚP 10. Trắc nghiệm bao gồm các câu hỏi bám sát kiến thức bài học lý thuyết với thời gian làm bài quy định sẽ giúp các em rèn luyện kỹ năng làm bài tập trắc nghiệm. Bên cạnh đó, mỗi câu hỏi trong Trắc nghiệm đều biên soạn các đáp án chi tiết rõ ràng và cụ thể để giúp các em đối chiếu kết quả sau khi làm Trắc nghiệm một cách dễ dàng. Mời các em cùng tham khảo nội dung bộ Trắc nghiệm bên trên.
Trả lời