Câu hỏi:
Tính thể tích \(V\) của phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 4\), biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trụ \(Ox\) tại điểm có hoành độ \(x\) \(\left( {1 \le x \le 4} \right)\) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \(2x\).
-
A.
\(V = 126\sqrt 3 \pi \) -
B.
\(V = 126\sqrt 3 \) -
C.
\(V = 63\sqrt 3 \pi \) -
D.
\(V = 63\sqrt 3 \)
Lời giải tham khảo:
Đáp án đúng: B
Diện tích một tam giác đều cạnh \(2x\) là \(\dfrac{{{{\left( {2x} \right)}^2}\sqrt 3 }}{4} = {x^2}\sqrt 3 \).
Diện tích hình lục giác đều bằng \(6\) lần diện tích một tam giác đều nên \(S\left( x \right) = 6{x^2}\sqrt 3 \).
Thể tích \(V = \int\limits_1^4 {S\left( x \right)dx} = \int\limits_1^4 {6{x^2}\sqrt 3 dx} = \left. {2{x^3}\sqrt 3 } \right|_1^4 = 126\sqrt 3 \).
Chọn B.
Trả lời