Câu hỏi: Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 6mx + m\) có hai điểm cực trị. A. \(m \in \left( {0;8} \right)\) B. \(m \in \left( {0;2} \right)\) C. \(m \in \left( { - \infty ;0} \right) \cup \left( {8; + \infty } … [Đọc thêm...] vềTìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} – 3m{x^2} + 6mx + m\) có hai điểm cực trị.
Đề thi HKI Toán 12
Cho hình chóp \(S.ABCD\) có đáy là hình thang cân với \(AB//CD\), \(AB = 2a,AD = CD = a\). Hình chiếu vuông góc của \(S\) xuống mặt đáy là trung điểm của \(AC\). Biết góc giữa \(SC\) và \(\left( {ABCD} \right)\) là \(45^\circ \), tính thể tích của khối chóp \(S.ABCD\)
Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy là hình thang cân với \(AB//CD\), \(AB = 2a,AD = CD = a\). Hình chiếu vuông góc của \(S\) xuống mặt đáy là trung điểm của \(AC\). Biết góc giữa \(SC\) và \(\left( {ABCD} \right)\) là \(45^\circ \), tính thể tích của khối chóp \(S.ABCD\) A. \(\dfrac{{9{a^3}}}{8}\) … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy là hình thang cân với \(AB//CD\), \(AB = 2a,AD = CD = a\). Hình chiếu vuông góc của \(S\) xuống mặt đáy là trung điểm của \(AC\). Biết góc giữa \(SC\) và \(\left( {ABCD} \right)\) là \(45^\circ \), tính thể tích của khối chóp \(S.ABCD\)
Cho hình đa diện đều loại \(\left\{ {4;3} \right\}\) cạnh là \(2a\). Gọi \(S\) là tổng diện tích tất cả các mặt của hình đa diện đó. Khi đó:
Câu hỏi: Cho hình đa diện đều loại \(\left\{ {4;3} \right\}\) cạnh là \(2a\). Gọi \(S\) là tổng diện tích tất cả các mặt của hình đa diện đó. Khi đó: A. \(S = {a^2}\sqrt 3 \) B. \(S = 6{a^2}\) C. \(S = 4{a^2}\) D. \(S = 24{a^2}\) … [Đọc thêm...] vềCho hình đa diện đều loại \(\left\{ {4;3} \right\}\) cạnh là \(2a\). Gọi \(S\) là tổng diện tích tất cả các mặt của hình đa diện đó. Khi đó:
Cho khối chóp đều \(S.ABCD\) có cạnh đáy là \(2a\), cạnh bên \(3a\). Tính thể tích của khối chóp \(S.ABCD\).
Câu hỏi: Cho khối chóp đều \(S.ABCD\) có cạnh đáy là \(2a\), cạnh bên \(3a\). Tính thể tích của khối chóp \(S.ABCD\). A. \(\dfrac{{4{a^3}\sqrt 7 }}{3}\) B. \(\dfrac{{{a^3}\sqrt 7 }}{3}\) C. \(\dfrac{{2{a^3}\sqrt {17} … [Đọc thêm...] vềCho khối chóp đều \(S.ABCD\) có cạnh đáy là \(2a\), cạnh bên \(3a\). Tính thể tích của khối chóp \(S.ABCD\).
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)
Câu hỏi: Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\) A. \(\dfrac{{{a^3}\sqrt 7 }}{7}\) … [Đọc thêm...] vềCho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)
Hàm số \(f\left( x \right) = \log \left( {{x^{2019}} – 2020x} \right)\) có đạo hàm là
Câu hỏi: Hàm số \(f\left( x \right) = \log \left( {{x^{2019}} - 2020x} \right)\) có đạo hàm là A. \(f'\left( x \right) = \dfrac{{\left( {{x^{2019}} - 2020x} \right).\ln 10}}{{2019{x^{2018}} - 2020}}\) B. \(f'\left( x \right) = \dfrac{{{x^{2019}} - 2020x}}{{\left( {2019{x^{2018}} - 2020} \right).\ln … [Đọc thêm...] vềHàm số \(f\left( x \right) = \log \left( {{x^{2019}} – 2020x} \right)\) có đạo hàm là
Số điểm cực trị của hàm số \(y = {\left| x \right|^3} – 4{x^2} + 3\) là
Câu hỏi: Số điểm cực trị của hàm số \(y = {\left| x \right|^3} - 4{x^2} + 3\) là A. \(4\) B. \(2\) C. \(3\) D. \(0\) Lời giải tham khảo: Đáp án đúng: CTXĐ : \(D = \mathbb{R}\) Xét hàm số \(y = f\left( x … [Đọc thêm...] vềSố điểm cực trị của hàm số \(y = {\left| x \right|^3} – 4{x^2} + 3\) là
Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\).
Câu hỏi: Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\). A. \(\dfrac{{3{a^3}}}{8}\) B. \(\dfrac{{{a^3}\sqrt 3 … [Đọc thêm...] vềCho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\).
Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để phương trình \({9^x} – 2m{.3^x} + {m^2} – 8m = 0\) có 2 nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 2\). Tính tổng các phần tử của \(S\).
Câu hỏi: Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để phương trình \({9^x} - 2m{.3^x} + {m^2} - 8m = 0\) có 2 nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 2\). Tính tổng các phần tử của \(S\). A. \(\dfrac{9}{2}\) B. \(9\) C. \(1\) … [Đọc thêm...] vềGọi \(S\) là tập hợp các giá trị của tham số \(m\) để phương trình \({9^x} – 2m{.3^x} + {m^2} – 8m = 0\) có 2 nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 2\). Tính tổng các phần tử của \(S\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\) \(AD = 2a,\) \(AA' = 3a\). Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật \(ABCD\), đường tròn đáy ngoại tiếp hình chữ nhật \(A'B'C'D'\) là
Câu hỏi: Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\) \(AD = 2a,\) \(AA' = 3a\). Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật \(ABCD\), đường tròn đáy ngoại tiếp hình chữ nhật \(A'B'C'D'\) là A. \(\dfrac{{15\pi {a^3}}}{4}\) B. \(\dfrac{{5\pi … [Đọc thêm...] vềCho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\) \(AD = 2a,\) \(AA' = 3a\). Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật \(ABCD\), đường tròn đáy ngoại tiếp hình chữ nhật \(A'B'C'D'\) là